Friday, August 7, 2009

PLANAR CHROMATOGRAPHY

1)PICTURE (SOPHISTICATED CHROMATOGRAPHY GAS SYSTEM)
2) PICTURE CHROMATOGRAM OF 10 ESSENTIAL OIL COLOURED WITH VANNILIN REAGENT)
MEANING:
chromatography technique used to separate mixtures. Thin layer chromatography is performed on a sheet of glass, plastic, or aluminum foil, which is coated with a thin lChromatography (from Greek χρώμα:chroma, color and γραφειν:graphein to write) is the collective term for a set of laboratory techniques for the separation of mixtures. It involves passing a mixture dissolved in a "mobile phase" through a stationary phase, which separates the analyte to be measured from other molecules in the mixture and allows it to be isolated.
Chromatography may be preparative or analytical. The purpose of preparative chromatography is to separate the components of a mixture for further use (and is thus a form of purification). Analytical chromatography is done normally with smaller amounts of material and is for measuring the relative proportions of analytes in a mixture. The two are not mutually exclusive.

PLANAR CHROMATOGRAPHY:

Planar chromatography is a separation technique in which the stationary phase is present as or on a plane. The plane can be a paper, serving as such or impregnated by a substance as the stationary bed (paper chromatography) or a layer of solid particles spread on a support such as a glass plate (thin layer chromatography).


Different compounds in the sample mixture travel different distances according to how strongly they interact with the stationary phase as compared to the mobile phase. The specific Retardation factor (Rf) of each chemical can be used to aid in the identification of an unknown substance.

PAPER CHROMATOGRAPHY:

Paper chromatography is a technique that involves placing a small dot or line of sample solution onto a strip of
chromatography paper. The paper is placed in a jar containing a shallow layer of solvent and sealed. As the solvent rises through the paper, it meets the sample mixture which starts to travel up the paper with the solvent. This paper is made of cellulose, a polar substance, and the compounds within the mixture travel farther if they are non-polar. More polar substances bond with the cellulose paper more quickly, and therefore do not travel as far.


THIN LAYER CHROMATOGRAPHY:

Thin layer chromatography (TLC) is aayer of adsorbent material, usually silica gel, aluminium oxide, or cellulose. This layer of adsorbent is known as the stationary phase.

After the sample has been applied on the plate, a solvent or solvent mixture (known as the mobile phase) is drawn up the plate via capillary action. Because different analytes ascend the TLC plate at different rates, separation is achieved.

Thin layer chromatography finds many applications, including:
#assaying the radiochemical purity of radiopharmaceuticals
#determination of the pigments a plant contains
#detection of
pesticides or insecticides in food
#analysing the dye composition of fibers in
forensics, or
#identifying compounds present in a given substance
monitoring organic reactions.


A number of enhancements can be made to the original method to automate some steps, to increase the resolution achieved with TLC and to allow more accurate quantitation. This method is referred to as HPTLC, or "high performance TLC".


The process is similar to paper chromatography with the advantage of faster runs, better separations, and the choice between different stationary phases. Because of its simplicity and speed TLC is often used for monitoring chemical reactions and for the qualitative analysis of reaction products.


A small spot of solution containing the sample is applied to a plate, about one centimeter from the base. The plate is then dipped in to a suitable solvent, such as hexane or ethyl acetate, and placed in a sealed container. The solvent moves up the plate by capillary action and meets the sample mixture, which is dissolved and is carried up the plate by the solvent. Different compounds in the sample mixture travel at different rates due to the differences in their attraction to the stationary phase, and because of differences in solubility in the solvent.
By changing the solvent, or perhaps using a mixture, the separation of components (measured by the Rf value) can be adjusted. Also, the separation achieved with a TLC plate can be used to estimate the separation of a flash chromatography column.


Separation of compounds is based on the competition of the solute and the mobile phase for binding places on the stationary phase. For instance, if normal phase silica gel is used as the stationary phase it can be considered polar. Given two compounds which differ in polarity, the most polar compound has a stronger interaction with the silica and is therefore more capable to dispel the mobile phase from the binding places.



Consequently, the less polar compound moves higher up the plate (resulting in a higher Rf value). If the mobile phase is changed to a more polar solvent or mixture of solvents, it is more capable of dispelling solutes from the silica binding places and all compounds on the TLC plate will move higher up the plate. Practically this means that if you use a mixture of ethyl acetate and heptane as the mobile phase, adding more ethyl acetate results in higher Rf values for all compounds on the TLC plate.


Changing the polarity of the mobile phase will not result in reversed order of running of the compounds on the TLC plate. If a reversed order of running of the compounds is desired, an apolar stationary phase should be used, such as C18-functionalized silica.

Applications:

In organic chemistry, reactions are qualitatively monitored with TLC. Spots sampled with a capillary tube are placed on the plate: a spot of starting material, a spot from the reaction mixture, and a "co-spot" with both. A small (3 by 7 cm) TLC plate takes a couple of minutes to run. The analysis is qualitative, and it will show if the starting material has disappeared, i.e. the reaction is complete, if any product has appeared, and how many products are generated (although this might be under-estimated due to co-elution).


Unfortunately, TLCs from low-temperature reactions may give misleading results, because the sample is warmed to room temperature in the capillary, which can alter the reaction—the warmed sample analyzed by TLC is not the same as what is in the low-temperature flask. One such reaction is the DIBALH reduction of ester to aldehyde.

As an example the chromatography of an extract of green leaves (for example
spinach) in 7 stages of development. Carotene elutes quickly and is only visible until step 2. Chlorophyll A and B are halfway in the final step and lutein the first compound staining yellow.


In one study TLC has been applied in the screening of organic reactions. for example in the fine-tuning of BINAP synthesis from 2-naphthol. In this method the alcohol and catalyst solution (for instance iron(III) chloride) are place separately on the base line, then reacted and then instantly analyzed.